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Abstract

This paper extends the analysis of the self-excitated vibrations of a drilling structure presented in an earlier paper

[T. Richard, C. Germay, E. Detournay, A simplified model to explore the root cause of stick-slip vibrations in drilling

systems with drag bits, Journal of Sound and Vibration 305 (3) (2007) 432–456] by basing the formulation of the model on

a continuum representation of the drillstring rather than on a characterization of the drilling structure by a 2 degree

of freedom system. The particular boundary conditions at the bit–rock interface, which according to this model are

responsible for the self-excited vibrations, account for both cutting and frictional contact processes. The cutting process

combined with the quasi-helical motion of the bit leads to a regenerative effect that introduces a coupling between the axial

and torsional modes of vibrations and a state-dependent delay in the governing equations, while the frictional contact

process is associated with discontinuities in the boundary conditions when the bit sticks in its axial and angular motion.

The dynamic response of the drilling structure is computed using the finite element method. While the general tendencies of

the system response predicted by the discrete model are confirmed by this computational model (for example that the

occurrence of stick-slip vibrations as well as the risk of bit bouncing are enhanced with an increase of the weight-on-bit or a

decrease of the rotational speed), new features in the self-excited response of the drillstring can be detected. In particular,

stick-slip vibrations are predicted to occur at natural frequencies of the drillstring different from the fundamental one

(as sometimes observed in field operations), depending on the operating parameters.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Rotary drilling systems used to drill deep boreholes in the earth often experience self-excited vibrations,
which are responsible, when becoming too severe, for the fatigue of drillpipes and more importantly for the
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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premature failure of bits [1–3]. As drilling systems equipped with drag bits or fixed cutters bit (which are
usually referred to as polycrystalline diamond compact or simply PDC bits) are especially prone to self-excited
vibrations, these systems have been the focus of many research activities aimed at identifying the mechanisms
of self-excitation. In particular, the stick-slip oscillations of PDC bits have generally been attributed to
a rate-weakening bit–rock interface law [4–7]. However, a model based on a rate-independent bit–rock
interaction law has recently been developed that also predicts stick-slip oscillations of the bit [8,9]. This model,
originally proposed by Richard, Germay, and Detournay (henceforth referred to as the RGD model),
instead makes use of the so-called regenerative effect, introduced by Tlusty [10] and Tobias [11] in their
pioneering studies of tool chatter in metal machining. In the turning process, for example, the regenerative
effect accounts for the dependence of the thickness of material removed by a cutter to the position of the
cutter at the previous revolution of the workpiece. This effect introduces a feedback in the system,
as the current force on the tool, which is a function of the instantaneous depth of cut, depends on the axial
position of the tool at an earlier time. Mathematically, the regenerative effect leads to the formulation
of a constant delay differential equation when the cutting process is modeled by a single degree of freedom
system, with the tool vibration assumed to be orthogonal to the cutting motion. The concept has been
extended to the analysis of self-excited vibrations in other machining processes that involve tools with several
blades or cutters [12–14].

Starting in the late 1980s, a group of researchers inspired by the work on machine chatter proposed the
regenerative effect as the root mechanism of the self-excited drillstring vibrations induced by drag bits [15–19].
The focus of their work was initially on the longitudinal vibrations of the drilling structure, although the effect
of the torsional vibrations of the drillstring were later considered. Extending this approach, the RGD model
incorporated several key additional features, while simplifying the drilling structure to a two degree-of-
freedom system and the bit to a set to n regularly spaced blades.

First, the delay, which represents the time required to rotate the bit by the angle between two adjacent
blades, is viewed in the RGD model as being a function of time since the angular velocity of the bit is not
constant. This is in contrast to the work on the self-excited vibrations of machine tools, where the delay is
considered constant, but for a few exceptions [20,21]. Indeed, the variation of the angular velocity affecting the
bit due to the large torsional compliance of the drilling structure needs to be accounted for. This consideration
results in a state-dependent delay differential equation, with the delay being the solution of an implicit
equation that relies on the history of the bit angular motion. The combination of the depth of cut (the
difference between the current and a delayed axial position of the bit) as the kinematical state variable of the
interface laws with a variable delay all conspire to create a two-way coupling between the axial and torsional
modes of vibrations at the bit–rock interface.

Second, the RGD model takes into consideration not only a rate-independent frictional contact mobilized
at the wear flats/rock interface [22,23], but also a loss of contact at this interface when the bit axial velocity
changes sign. Both processes introduce a discontinuity in the boundary conditions when the bit sticks either in
its angular motion and/or in its axial motion, and thus a strong nonlinearity in the model.

This paper expands on the RGD model by basing the formulation of the mathematical model on a
continuum representation of the drillstring, rather than on a characterization of the drilling structure
by a 2 degree of freedom system. The paper is structured as follows. First, a dynamic model of the drillstring
is presented, namely, the two geometrically uncoupled wave equations that govern the axial and
torsional vibrations of the structure. Next we formulate the interface laws that describe the interaction
between the bit and the rock and we discuss the different modes of bit–rock interaction, which requires
consideration of stick and slip phases for both the angular and axial motions of the bit. The mathematical
model is then formulated in terms of perturbations from steady drilling, corresponding to a constant
angular and axial velocity of the bit, and is furthermore scaled to reduce the parameters of the model to a set
of numbers. The computational algorithm, which relies on a discretization of the drilling structure by the
finite element method, is then described. Finally, we report the results of a series of numerical simulations,
which confirm the general tendencies of the system response predicted by the RGD model, but which
also show new features of system response such as stick-slip vibrations that occur at natural frequencies
of the drillstring different from the fundamental one (as sometimes observed in field operations) under certain
conditions.
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Fig. 1. Drilling structure (adapted from Ref. [33]).
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2. Mathematical model

2.1. Problem definition

A rotary drilling structure consists essentially of a rig, a drillstring, and a bit, see Fig. 1. The principal
components of the drillstring are the bottom hole assembly (BHA) of length Lb composed mainly of heavy steel
tubes to provide a large downward force on the bit, and a set of drillpipes of length Lp made of thinner tubes.
A coordinate x running from the rig to the bit is defined, and subscripts p and b are used to distinguish the
quantities related to the drillpipe ð0oxoLpÞ and to the BHA ðLpoxoLÞ, respectively. The total length of the
drillstring is thus L ¼ Lp þ Lb. We assume that the borehole is vertical, and that there are no spurious lateral
motions of the bit. At the ground surface, we assume that a constant upward force H0 and a constant angular
velocity O0 are applied by the rig on the drillstring. At the bottom of the hole, the boundary conditions are given
by the rate-independent bit–rock interface laws [22,23]. For the sake of simplicity, we consider here an idealized
drag bit of radius a consisting of n identical radial blades regularly spaced by an angle equal to 2p=n, see Fig. 2.
Each blade is characterized by a sub-vertical cutting surface and a chamfer or wear flat of constant width ‘n

orthogonal to the bit axis. The total wear flat length of the bit is defined as ‘ ¼ n‘n.
This paper focuses on the self-excited vibrations of the drilling structures, over time scales such that

the increase of length of the drillstring associated with the deepening of the borehole can be ignored. Thus,
we assume here that L does not evolve with time.

2.2. Model of the drillstring

Let Uðx; tÞ and Fðx; tÞ be the axial and the angular displacements of the drillstring at x 2 ½0;L� and at time t.
The ratio diameter/length of a drillstring, typically less than 10�4, implies that the drillstring can be modeled
using an Euler–Bernoulli beam model. The equations of motion related to the axial and torsional vibrations
are [24]

rA
q2U
qt2
� EA

q2U

qx2
¼ f U , (1)



ARTICLE IN PRESS

ln

2π/n

Φ(t)
Φ(t–tn)

x

Ω(t)

dn(t)

Un(t)
Un(t–tn)

Fig. 2. Section of the bottom-hole profile (in gray) located between two successive blades of a drill bit, characterized by n identical blades

symmetrically distributed around the axis of revolution. The width of wear flat per blade is ‘n ¼ ‘=n and the thickness of the rock ridge in

front of a blade is dn ¼ d=n (adapted from Ref. [8]). The inset shows a CAD rendering of a similar bladed bit.
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rJ
q2F
qt2
� GJ

q2F
qx2
¼ f F, (2)

where r is the material density, f U ðxÞ is the axial body force due to gravity, and f FðxÞ is the body force
associated with the developments of shear stresses between the pipe and the mud. Also, E ðGÞ denotes the
Young’s (shear) modulus of the drillstring material, and A ðJÞ the cross-section (polar moment of inertia) of
one section, respectively, given by

A ¼ pðr2o � r2i Þ; J ¼
p
2
ðr4o � r4i Þ, (3)

where ro and ri are the outer and the inner radius of the pipe, respectively. In view of the configuration of the
drillstring, A ðJÞ is equal to Ap ðJpÞ in the drillpipe ð0oxoLpÞ and to Ab ðJbÞ and in the BHA ðLpoxoLÞ.

Because of the discontinuity of the cross-sectional area at the interface of the drillpipes and the BHA, an
incident wave travelling through it will be partly transmitted in the other section while the rest will be reflected.
The coefficients of transmission and reflection are determined by imposing the continuity of the velocity and
the balance of forces at the junction point x ¼ Lp

qU

qt

����
x¼Lþp

¼
qU

qt

����
x¼L�p

;
qU

qx

����
x¼Lþp

¼
Ap

Ab

qU

qx

����
x¼L�p

,

qF
qt

����
x¼Lþp

¼
qF
qt

����
x¼L�p

;
qF
qx

����
x¼Lþp

¼
Jp

Jb

qF
qx

����
x¼L�p

. (4)

For the idealized drilling system under consideration, the boundary conditions applied by the rig to the top of
the drillstring are

F ¼ O0t; EAp

qU

qx
¼ �H0 at x ¼ 0. (5)

As discussed further below, the nature of the bit–rock interaction laws implies that both the weight-on-bit W

and the torque-on-bit T are actually functions of the history of F (denoted by t
0F) and the history of U

(denoted by t
0U) [8], although the parameters of the interaction laws are assumed to be rate-independent [23].

The boundary conditions at the bit can be generically written as

EAb

qU

qx
¼ �W ðt0F;

t
0UÞ; GJb

qF
qx
¼ �Tðt0F;

t
0UÞ at x ¼ L, (6)
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where the explicit expressions of the functions Tðt0F;
t
0UÞ, W ðt0F;

t
0UÞ are derived in the next section. We

adopt the same sign convention for W and T as for the bit axial velocity V and bit angular velocity O,
respectively. The rate quantities, V and O, which are defined as

V ¼
qU

qt

����
x¼L

; O ¼
qF
qt

����
x¼L

(7)

evidently inherit the sign convention of the displacements U and F.
2.3. Boundary conditions at the bit

2.3.1. Cutting and frictional contact processes

The bit–rock interaction laws that characterize the normal drilling process (defined by V40 and O40)
generally need to account for both a pure cutting action by the blades of the bit and a frictional contact at the
interface between the blade wear flats and the rock [22]. Thus the torque-on-bit T and weight-on-bit W can be
expressed as

T ¼ Tc þ Tf ; W ¼W c þW f , (8)

where Tc and W c reflect the forces on the blades associated with the cutting process, and Tf and W f those
associated with frictional contact.

The cutting forces on each blade are taken to be proportional to dn, the identical thickness of the rock ridge
in front of each blade, see Fig. 2. After summing the contributions of all the cutting forces to the weight and
torque-on-bit, we can write [22,19]

W c ¼ azed; Tc ¼
1
2
a2ed, (9)

where d is the combined depth of cut given by

d ¼ ndn. (10)

Under stationary conditions (constant V and O), d simply represents the depth of cut per revolution of the bit.
The cutting parameters introduced in Eq. (9) consist of the intrinsic specific energy e, which is the amount of
energy required to cut a unit volume of rock with a perfectly sharp bit, and a number z characterizing the
inclination of the cutting force on the cutting face.

The frictional forces mobilized along the wear flats depend on a rate-independent friction coefficient m [22].
Laboratory experiments, either single cutter tests [25] or drilling tests with core barrels [23], indicate the
existence of two regimes for values of depth of cut that are relevant to deep drilling: (i) at small depths of cut,
which are characterized by a dominance of the frictional contact process and by an increase of the contact
forces with d and (ii) at larger depths of cut, when the contact forces are fully mobilized and do not vary
with d. Here, we assume that d ¼ 0 in the first regime, i.e., the drilling tool does not penetrate into the rock if
the forces on the rotating bit are below a threshold given by

W fs ¼ a‘s; Tfs ¼
1
2
a2gm‘s, (11)

where s is the limit normal stress acting across the wear flat/rock interface and g is a number that globally
characterizes the spatial orientation and distribution of the chamfers/wear flats [22]. While the above
expression for the weight-on-bit threshold W fs implies that penetration of the bit takes place only when the
normal stress transmitted by the wearflat is everywhere equal to s, the expression for Tfs corresponds to the
assumption that friction is mobilized on each contact surface. Under this assumption, the bit/rock interaction
laws for a rotating bit in contact with the rock simplify to

d ¼ 0; T ¼ 1
2
agmW ; WpW fs, (12)

d40; T ¼ Tc þ Tfs; W ¼W c þW fs; W4W fs, (13)
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The above interface laws apply strictly when VX0 and O40. Other modes of interaction have to be
considered when the vibrations of the drillstring cause the angular and axial velocities of the bit to cross zero
(see Section 2.3).

The bit–rock interaction laws introduce a relationship between the three state variables d, T , and W and
thus a coupling, through the boundary conditions at the bit, between the axial and torsional vibrations of the
drillstring. The parameters characterizing the interface laws, i.e., �, z, m, s, and g are assumed to be constant.
This assumption is supported by single cutter tests and by drilling experiments conducted under kinematically
controlled conditions [23]. Furthermore, single cutter experiments also indicate that the forces on a cutter
depend on the depth of cut but not on the cutting velocity, at least in the range appropriate to field conditions.
Similarly, laboratory drilling experiments also show that the forces on a bit in steady-state kinematically
controlled tests depend on the rate of penetration V and on the bit angular velocity O, only through their
ratio, i.e., on the dept of cut. In other words, experiments suggest that the interface laws are rate-independent.

2.3.2. History dependence of the bit– rock interaction laws

The dependence of Tc and W c on the history of the bit motion is revealed by writing that the depth of cut d

is related to the incremental axial displacement of the bit over a certain time interval, see Fig. 2

dðtÞ ¼ n½UðL; tÞ �UðL; t� tnÞ�. (14)

The quasi-helical motion of the bit associated with the regenerative effect brings the delayed axial position of
the bit, UðL; t� tnÞ, into the boundary conditions. Its presence in the bit–rock interaction laws acts as the
source of self-excitations of the system. The delay tn is the time required for the bit to rotate by an angle of
2p=n to reach its current angular position and is therefore the solution of the following equation [8]:

FðL; tÞ � FðL; t� tnÞ ¼
2p
n
. (15)

If the bit experiences torsional vibrations, the delay is not constant (in contrast to what is commonly assumed
in the milling process, see, e.g., Ref. [14]).

2.3.3. Modes of bit– rock interaction

We now discuss the different modes of interaction of the bit with the rock: (i) torsional slip phase, which can
itself be decomposed into three sub-regimes depending on the sign of the axial velocity of the bit, (ii) torsional
stick phase, (iii) backward rotation, and (iv) bit bouncing.

The torsional slip phase corresponds to O40 and dX0. The three cases V40, V ¼ 0, and Vo0 need to be
distinguished.
�
 V40. The bit penetrates the rock and the contact forces are fully mobilized. Hence, as described above,

T ¼ Tc þ Tfs; W ¼W c þW fs, (16)
�
 Vo0. The bit moves upward but still cuts rock, if d40. We assume complete loss of contact between the
bit wear flats and the rock. The bit–rock interaction is reduced to the pure cutting process and thus the
frictional torque and the frictional weight-on-bit vanish

T ¼ Tc; W ¼W c. (17)
�
 V ¼ 0. An axial stick phase may occur when the axial vibrations cause the bit axial velocity V to vanish
during a finite time although the bit is still rotating forward O40. The axial stick phase corresponds to a
situation when the applied weight-on-bit is compensated by the force W c required for the cutting process
and only a fraction of the threshold force W fs at the wear flat. In other words, 0oW f oW fs in the axial
stick phase.

The torsional stick phase is characterized by O ¼ 0 during a finite time interval. During this phase, we consider
that the bit is stuck into the rock formation, preventing any axial movement ðV ¼ 0Þ. The torsional stick phase
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occurs when torsional vibrations become so severe that the bit angular velocity vanishes and the frictional
torque Tf is large enough to prevent backward rotation. As the top of the drillpipes keeps rotating, the elastic
energy stored in the drillstring increases. When the forces imparted by the bit onto the rock are sufficient to
overcome the minimum forces required for the drilling process, the bit enters a new phase of slip.

Consider next the backward rotation of the bit ðOo0Þ. If the bit rotates backwards, the frictional torque
changes sign and the cutting components of both T and W vanish since the cutting faces lose contact with the
ridge of rock in front of them. For the sake of simplicity, we assume that the frictional component of the
torque is sufficient to hinder any backward rotation of the bit. Although backwards rotation is not
accommodated in this theory, it can be useful to detect if backward slip occurs for a set of parameters since it
has disastrous consequences for the life of the cutter.

Finally consider bit bouncing, when the bit loses entirely contact with rock on both the cutting faces and on
the wear flats of the blades. Thus the forces on the bit vanish

T ¼ 0; W ¼ 0. (18)

This mode is characterized by a negative depth of cut do0.

2.4. Steady-state solution

In the absence of any vibrations and for constant values of the control parameters H0 and O0 and the other
problem parameters, the drillstring axial and torsional motions consist of the superimposition of a static
deformation denoted by the subscript s and a rigid body motion

U0ðx; tÞ ¼ V0tþUsðxÞ; F0ðx; tÞ ¼ O0tþ FsðxÞ. (19)

The static solution UsðxÞ and FsðxÞ is readily computed from the governing equations (1) and (2), the interface
conditions (4) (with all the time derivatives evidently equal to zero) and the following boundary conditions

Fs ¼ 0; EAp

qUs

qx
¼ �H0 at x ¼ 0, (20)

GJb

qFs

qx
¼ �T0; EAb

qUs

qx
¼ �W 0 at x ¼ L, (21)

where T0 and W 0 are the steady-state torque and weight-on-bit. From these equations UsðxÞ can be
determined up to a constant, which can be set by imposing UsðLÞ ¼ 0. Computation of the static solution Us

and Fs is not of great interest within the context of this paper, and is thus not pursued further. However,
determination of steady state quantities V0, T0, and W 0 is relevant to our further proceedings. The steady-
state weight-on-bit W 0 is simply given by the balance of forces in the vertical direction, i.e.,

W 0 ¼

Z L

0

f U ðxÞdx�H0. (22)

Assuming that the bit is drilling, i.e., W 04W fs, the depth of cut per revolution d0 is then deduced from axial
interface laws (9) and (13)

d0 ¼
W 0 �W fs

aze
. (23)

From the above expression for d0, we can readily deduce T0 using Eqs. (9) and (13), i.e.,

T0 ¼
1
2
ea2d0 þ Tfs (24)
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as well as the steady rate of penetration V 0

V 0 ¼
d0O0

2p
(25)

on account that the delay tn0 is constant for the trivial motion

tn0 ¼
2p

nO0
. (26)

3. Scaling and formulation for the perturbed motion

We formulate here the problem in terms of a perturbation from a trivial solution and write the equations
governing the evolution of this perturbation in a dimensionless form.

3.1. Scaling

As a prelude to the formulation of the problem in terms of the perturbed motion of the drillstring compared
to the trivial solution, we introduce characteristic quantities (denoted by an asterisk) to scale the equations,
namely a time t�, a length L�, a depth of cut d�, a weight-on-bit W �, and a torque-on-bit T�.

The characteristic time t� corresponds to the period of oscillation associated with the fundamental
frequency o1 of the drillstring in torsion, while the characteristic length L� is selected as the length of the
drillstring L. Finally, the scaling of d, W , and T follows from the RGD model. Hence,

t� ¼
2p
o1
; L� ¼ L; d� ¼

2Cp

ea2
; T� ¼

1
2
ea2d�; W � ¼ zead�, (27)

where Cp ¼ GJp=Lp is the global torsional stiffness of the drillpipes. The introduction of these scales enables
one to define dimensionless time and space variables t ¼ t=t�, x ¼ x=L�, as well as the dimensionless state
variables of the bit, namely the bit axial velocity v ¼ Vt�=d�, the bit angular velocity o ¼ Ot�, the depth of cut
d ¼ d=d�, the torque-on-bit T ¼ T=T�, and the weight-on-bit W ¼W=W �. Finally, the bluntness number l
and the bit–rock interaction number b appear naturally in the dimensionless bit–rock interaction laws

l ¼
W fs

W �

¼
‘a2s
2zCp

; b ¼ mgz. (28)

The number lX0 describes the wear state of the bit and is equal to zero for a ideally sharp bit, while the
number bX0 is only a characteristic of the bit–rock interface and is typically less than 1.

Note that an estimate of t� obtained using the Rayleigh–Ritz method [26] is given by

t� ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ib þ Ip

3Cp

s
, (29)

where Ip and Ib denote the moment of inertia of the set of drillpipes and of the BHA, respectively,

Ib ¼ rJbLb; Ip ¼ rJpLp. (30)

3.2. Trivial solution

Using the above scaling and given the control parameters W0 ð4lÞ and O0, the stationary solution can be
written as

d0 ¼ l�W0; T0 ¼ d0 þ bl; v0 ¼ d0=ntn0,

where the trivial delay tn0 ¼ 2p=no0.
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3.3. Perturbed motion

The dimensionless perturbed axial and angular displacements, uðx; tÞ and jðx; tÞ are naturally defined as

u ¼
U �U0

d�
; j ¼ F� F0. (31)

The equations of motion, (1) and (2), can now be rewritten in terms of the perturbed displacements u and j,
and the new variables t and x as

Gu

q2u

qt2
�

q2u

qx2
¼ 0, (32)

Gj
q2j
qt2
�

q2j

qx2
¼ 0, (33)

with the numbers Gu and Gj, respectively, given by

Gu ¼
rL2

Et2�
; Gj ¼

rL2

Gt2�
. (34)

The momentum balance equations (32) and (33) are complemented by the continuity conditions at the
interface x ¼ xp between the drillstring and the BHA

qu

qt

����
x¼xþp

¼
qu

qt

����
x¼x�p

;
qu

qx

����
x¼xþp

¼
Ap

Ab

qu

qx

����
x¼x�p

,

qj
qt

����
x¼xþp

¼
qj
qt

����
x¼x�p

;
qj
qx

����
x¼xþp

¼
Jp

Jb

qj
qx

����
x¼x�p

(35)

as well as the boundary conditions at the rig

qu

qx
¼ 0; j ¼ 0; at x ¼ 0 (36)

and at the bit

qu

qx
¼ �cuŴ;

qj
qx
¼ �cjT̂ at x ¼ 1. (37)

Explicit expressions of the weight ŴðtÞ ¼WðtÞ �W0 and torque perturbation T̂ðtÞ ¼TðtÞ �T0 at the bit
are given in the next section. The two numbers cu and cj are defined as

cu ¼
zeaL

EAb

; cj ¼
CpL

GJb

noting also that

cuGj

cjGu

¼ c,

where c is the system number that was introduced in the RGD model

c ¼
z�aIb

MbCp

,

with Mb ¼ rAbLb denoting the mass of the BHA. The physical significance of c arises from the recognition
that c1=2 is proportional to the ratio of the axial over the torsional vibration frequency of the bit in the RGD
model and that this number is often large for deep drilling systems (typically of order 102).
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The system of equations consisting of the momentum balance equations, (32) and (33), the interface
conditions, (35), and the boundary conditions (36) and (37) is closed; it controls the evolution of a
perturbation of the displacement fields, given an initial value at time t ¼ 0.

3.4. Bit boundary conditions

Before reformulating the boundary conditions at the bit–rock interface for the perturbed motion, we
reemphasize that this interface not only couples the torsional and axial motions of the drillstring but also
introduces the sole nonlinearity in the model. The nature of this nonlinearity is multi-fold. First, there is a
feedback built in the boundary conditions through the dependency of the instantaneous depth of cut on the
delayed axial displacement of the bit; the delay is the solution of an implicit equation expressing the time
required to rotate the bit by the angle between two adjacent blades. Second, the axial stick phase at the bit and
the loss of contact at the wear flat–rock interface that are associated with change of directions of the bit axial
velocity introduce a discontinuity in the boundary conditions. Finally, the possibility of a torsional stick phase
with a complete arrest of the bit is another source of discontinuity in the boundary conditions.

3.4.1. Perturbed cutting and contact forces on the bit

The boundary conditions at the bit–rock interface, presented in Section 2.3, are now translated in explicit
expressions for ŴðtÞ and T̂ðtÞ, the perturbations in the weight- and torque-on-bit that appear in Eq. (37).
First, we write ŴðtÞ and T̂ðtÞ as a sum of the perturbations of the cutting and contact forces,

Ŵ ¼ Ŵc þ Ŵf ; T̂ ¼ T̂c þ T̂f (38)

and present separately the expressions for the cutting and contact components. These expressions depend on
the scaled axial and angular velocity of the bit, vðtÞ and oðtÞ

v ¼ v0 þ
qu

qt

����
x¼1
; o ¼ O0 þ

qj
qt

����
x¼1

. (39)

The cutting forces on the bit introduce a history-dependence in the boundary conditions. The dimensionless
cutting forces perturbations, ŴcðtÞ and T̂cðtÞ, can be written as

Ŵc ¼ T̂c ¼ d̂, (40)

where the perturbation in the depth of cut, d̂ ¼ d� d0, is given by

d̂ ¼ n½uð1; tÞ � uð1; t� tnÞ þ v0t̂n�. (41)

The quantity t̂n ¼ tn � tn0 is the perturbed delay, solution of the implicit equation

o0t̂nðtÞ þ jð1; tÞ � jð1; t� tnÞ ¼ 0. (42)

The contact forces at the bit are responsible for the discontinuous nature of the boundary conditions.
Particular attention must be paid when the solution is passing through a discontinuity, as the solution can
either cross the discontinuity or remain on it for a certain period of time (stick phase). The discontinuity in the
boundary conditions that is related to the reversal of sign of the bit axial velocity is treated within the
framework of the method introduced by Filippov [27] to solve discontinuous differential equations. Filippov’s
convex method hinges on introducing the discontinuous function gðvÞ defined as [28]

g ¼ 0; v40;

g 2 ½0; 1�; v ¼ 0;

g ¼ 1; vo0:

8><
>: (43)

The function gðvÞ is thus treated as a convex set-valued mapping when the bit velocity v ¼ 0; physically
speaking, it means that the fraction of the weight-on-bit transmitted by the wear flats adjusts so as to satisfy
the axial equilibrium. With the introduction of the function gðvÞ, the perturbed contact components of the
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forces on the bit can be expressed as

Ŵf ¼ �lgðvÞ; T̂f ¼ �blgðvÞ. (44)

An equivalent discontinuous function gðoÞ in the cutting term is not considered here, since the bit is prohibited
to rotate backward.

3.4.2. Modes of bit– rock interaction

We are now ready to summarize the different modes of bit–rock interaction.
�
 Normal drilling ðv40;o40; d40Þ. Here, gðvÞ ¼ 0.

�
 Axial stick phase ðv ¼ 0;o40Þ. This stick phase occurs as long as

0oŴc � Ŵol.

Filippov’s approach is implemented by computing gð0Þ according to

gð0Þ ¼ ðŴc � ŴÞ=l (45)

until gð0Þ reaches one of the bounds of the interval ½0; 1�. The term Ŵ in Eq. (45) is now to be understood as
the reaction force at the bit, corresponding to an imposed axial displacement. The above equation for gð0Þ
simply states that the component of weight-on-bit transmitted by the wear flat adjusts in such a way that
the axial forces on the bit are in equilibrium, as long as the bit is not moving axially. The bit will move
downward once the weight-on-bit overtakes the threshold force required to perform the action of cutting
(friction and pure cutting)

�
 Torsional stick phase ðv ¼ 0;o ¼ 0Þ. This stick phase occurs as long

T̂c � T̂X0. (46)
�
 Backward rotation ðoo0Þ. The corresponding criterion in dimensionless formulation yields

T̂�T0 � lX0. (47)
�
 Bit bouncing ðdo0Þ. The condition for bit bouncing is

v0tn þ uð1; tÞ � uð1; t� tnÞo0. (48)

4. Numerical algorithm

4.1. Finite element discretization

The drilling structure is discretized with a mesh of m� 1 finite beam elements (mp � 1 elements in the
drillpipe section), with the m nodes of the grid located at xi, (x1 ¼ 0, xmp

¼ xp, and xm ¼ 1). Let us define the
2m nodal displacements, uiðtÞ ¼ uðxi; tÞ and jiðtÞ ¼ jðxi; tÞ.

Classically, the displacement fields inside each element are interpolated by linear functions [29]. By using the
Galerkin method, the equations of motion (32), (33), integrated over element k yield the following coupled
differential equations

Gu

X2
j¼1

M
ðkÞ
i;j €ukþj�1 þ

X2
j¼1

K
ðkÞ
i;j ukþj�1 ¼ 0; i ¼ 1; 2, (49)

Gj

X2
j¼1

I
ðkÞ
i;j €jkþj�1 þ

X2
j¼1

C
ðkÞ
i;j jkþj�1 ¼ 0; i ¼ 1; 2, (50)
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where a dot denotes differentiation of a nodal variable with respect to t. In the above, M ðkÞ ðIðkÞÞ is the mass
(inertia) matrix of element k and KðkÞ ðCðkÞÞ is the longitudinal (torsional) stiffness matrix. The expressions for
these elementary matrices are given by

M ðkÞ ¼ IðkÞ ¼ xðkÞN1; KðkÞ ¼ CðkÞ ¼
1

xðkÞ
N2,

where xðkÞ ¼ xkþ1 � xk and

N1 ¼
1

6

2 1

1 2

� �
; N2 ¼

1 �1

�1 1

� �
.

Assembling each element contribution and taking into account the boundary conditions at x1 and xm yield the
final system of equations

Gu

Xm

j¼1

Mi;j €uj þ
Xm

j¼1

Du
i;j _uj þ

Xm

j¼1

Ki;juj ¼ �cuðŴc þ Ŵf Þdi;m; i ¼ 1; . . . ;m, (51)

Gj

Xm

j¼2

Ii;j €jj þ
Xm

j¼2

D
j
i;j _jj þ

Xm

j¼2

Ci;jjj ¼ �cjðT̂c þ T̂f Þdi;m; i ¼ 2; . . . ;m, (52)

where di;j is the Kronecker delta, M ðIÞ is the global mass (inertia) matrix and K ðCÞ is the global
longitudinal (torsional) stiffness matrix. Viscous damping matrices Du and Dj are introduced in the model, as
a Rayleigh damping function

Du ¼ aaGuM þ baK; Dj ¼ atGjIþ btC,

where aa, at, ba, and bt are constants to be chosen arbitrarily to set the damping coefficients to chosen values
for selected pairs of frequencies.

Finally, the expressions for the cutting and contact components of T̂ and Ŵ can be written as

Ŵc ¼ nðv0t̂nðtÞ þ umðtÞ � umðt� tnÞÞ þ gðv0 þ _umðtÞÞÞ; T̂c ¼ Ŵc, (53)

Ŵf ¼ �bgðv0 þ _umðtÞÞ; T̂f ¼ bŴf , (54)

where the delay perturbation t̂nðtÞ is deduced from

o0t̂nðtÞ þ jmðtÞ � jmðt� tnÞ ¼ 0. (55)

We recall that the ratio of the system numbers cu=cj is of the order 102 for representative values of real

drilling operations. A proper rescaling of the time t by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cu=Gu

p
in Eq. (51) and by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cj=Gj

q
in Eq. (52) would

reveal straightforwardly the existence of different time scales in the (fast) axial and (slow) torsional modes of
vibration.

4.2. Treatment of the boundary conditions at the bit during stick phases

Under normal drilling conditions ðv40;o40; d40Þ, the above system defines the 2m� 1 equations used to
calculate m� 1 angular and m axial displacements at the nodes of the FEM mesh (recall that j1 ¼ 0).
During a torsional stick phase, the axial and angular positions of the bit are kept constant
ð _um ¼ �v0; _jm ¼ �o0Þ, which reduces Eqs. (51)–(52) to a system of 2m� 3 equations. This status is
maintained until the torque delivered to the bit becomes sufficient to enter a slip phase. This torque and the
corresponding weight-on-bit can be computed by Eqs. (51) and (52), while considering that the displacement
quantities are given. Their expressions yield

Ŵ ¼ �
1

cu

Gu

Xm

j¼1

Mm;j €uj þ
Xm

j¼1

Du
m;j _uj þ

Xm

j¼1

Km;juj

 !
, (56)
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T̂ ¼ �
1

cj
Gj

Xm

j¼2

Im;j €jj þ
Xm

j¼2

D
j
m;j _jj þ

Xm

j¼2

Cm;jjj

 !
. (57)

During an axial stick phase, Eqs. (51)–(52) reduce to a system of 2m� 2 equations, since _um ¼ �v0. The
equality Ŵ ¼ Ŵb is used to calculate the contact component Ŵf according to Eq. (37) and thus the time at
which the system exits the axial stick phase.

4.3. Numerical procedure

The 2m� 1 second-order differential equations (51) and (52) are replaced by a set of 4m� 2 first-order
differential equations of the form

A _xðtÞ ¼ bðtÞ, (58)

where the unknown axial and angular positions and velocities are collected in the state-space vector x. This
system is solved using a Euler-forward finite difference technique (Newmark with a ¼ 1

4
and d ¼ 1

2
). Although

other algorithms have been implemented (such as second- and fourth-order Runge–Kutta methods) to solve
the low dimensional model, the Euler algorithm was preferred because it is numerically faster at comparable
level of accuracy for this class of problems.

A critical element of the procedure is the calculation of the delay tnðtÞ. In order to solve the governing
equations, it is necessary to keep the time history of the bit angular position over the last angular section of
angle 2p=n covered by the bit prior to time t. Also, the time history of the bit axial position has to be saved to
compute the depth of cut at time t.

The solution is advanced from time t to the next time step tþ Dt as follows:
(1)
 The new values of the vector x at time tþ Dt are computed using Euler-forward finite difference technique

xðtþ DtÞ ¼ xðtÞ þ A�1bðtÞDt. (59)
(2)
 The delay tnðtþ DtÞ is determined from Eq. (55) by interpolating between two discrete values of the
angular motion history jmðtÞ.
(3)
 The delayed axial position at the bit umðtþ Dt� tnðtþ DtÞÞ is interpolated between two discrete values of
the axial motion history. If bit bouncing occurs the program is interrupted.
(4)
 The set-value function gð _umðtþ DtÞÞ is computed according to Eq. (43) when _umðtþ DtÞa� v0 and
Eq. (45) if axial stick occurs ð _umðtþ DtÞ ¼ �v0Þ.
(5)
 The torsional stick condition is checked. If it is fulfilled, more accurate estimates of the stick time and the
corresponding unknowns are calculated by linear interpolation.
(6)
 The time variable is updated and the next iteration is considered.
The existence of various regimes (stick and slip) and the need to capture precisely the transition from one to
another requires the selection of a very small time step, that guarantees de facto the convergence of the
numerical algorithm during each regime.

5. Numerical results

The self-excited vibrations of an idealized, yet realistic, drilling system are simulated next. To simplify
interpretation of the computations, all the results are presented in physical units although the calculations
were carried out in terms of dimensionless quantities.

5.1. Problem definition

We consider a drilling system with a 1200m vertical drillstring mounted by a drag bit. The BHA is 200m
long and is made of steel tubes with ro ¼ 7:62 cm (3 in) and ri ¼ 2:86 cm ð11

8
inÞ, while the drillpipe section is
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1000m long and is characterized by ro ¼ 6:35 cm ð21
2
inÞ and ri ¼ 5:40 cm ð21

8
inÞ. The considered material

properties of the drillstring are E ¼ 200GPa, G ¼ 77GPa, and r ¼ 8000 kg=m3. The bit has a radius a ¼

10:8 cm ð41
4
inÞ and consists of four symmetrically positioned blades with a combined wear flat length

l ¼ 1:2mm. The bit geometry parameter g is taken to be equal to 1. The parameters of the bit–rock interface
are given by � ¼ 60MPa, z ¼ 0:6, s ¼ 60MPa, and m ¼ 0:6; thus b ¼ 0:36. This problem is thus characterized
by a system number c ¼ 13:7, and also by cu ¼ 1:49 and cj ¼ 0:28.

The BHA and the drillpipe section are uniformly discretized with 10 and 48 elements, respectively. This
particular discretization of the drillstring guarantees convergence of the calculations, as increasing the
resolution of the FEM mesh does not show any significant change in the observed results. The axial and
torsional modes of vibration are geometrically uncoupled. The first natural frequencies for each mode of
vibration are 1.63, 3.91, 6.41Hz (axial) and 0.45, 1.70, 3.19, 4.80Hz (torsional). The axial (torsional) damping
matrix is taken to be proportional to the axial (torsional) stiffness matrix with the proportionality coefficient
ba ¼ 5� 10�4 ðbt ¼ 10�4Þ. These coefficients generate damping ratios of 0.26% and 0.014% in the axial and
torsional fundamental modes, respectively.

Several numerical simulations were conducted with this configuration and with the above set of parameters,
by varying the control parameters W 0 and O0. The same perturbation of the angular motion, shaped
according to the first mode of torsional vibrations was adopted as initial conditions for each computation.

5.2. Transient response

The numerical simulation carried out for W 0 ¼ 15 kN and O0 ¼ 120 rev=min shows a transient response
that ultimately converges towards a limit cycle characterized by torsional stick-slip oscillations, see Fig. 3. To
facilitate discussion of the results, we identify on this figure three particular phases of the response.

In Phase I the amplitude of the axial vibrations increases rapidly, until a regime of axial stick-slip vibrations
with a bichromatic frequency content spread around 0.45Hz, (the fundamental frequency in torsion) and
4.6Hz is reached. The frequency content of the torsional vibrations exhibits a similar distribution, that betrays
the strong coupling between both modes of vibration, despite the fact that they are geometrically uncoupled.
These frequency contents are illustrated by spectrograms in Fig. 3. The first transient phase is also
characterized by a moderate growth of the amplitude of the first mode of the torsional vibrations.

Between Phases I and II, the axial oscillations momentarily exit the axial stick-slip regime. The component
at 4.6Hz smoothly fades out while another slight vibration component at 3.19Hz, the third mode in torsion,
arises. The amplitude of the torsional oscillations remains essentially unchanged until the axial vibrations
enter again the stick-slip regime (Phase II). Afterwards the torsional vibrations increase in amplitude to
ultimately reach a limit cycle in Phase III. This limit cycle is characterized by one stick and one slip phase in
the oscillations of the bit, as it can be observed in more detail in Fig. 4(a). The period of the limit cycle
virtually matches the period of the first natural mode of torsional vibrations of the drilling structure and both
angular and axial velocities of the bit still exhibit the same frequency content, see Fig. 4(a).

As observed during Phases I and II, the growth of the amplitude of the torsional vibrations appears to be
closely related to the existence of an axial stick-slip regime. It reveals another facet of the interaction between
the axial and torsional dynamics, which is also observed with the discrete model [30].

5.3. Influence of the weight-on-bit W 0

Several simulations carried out for W 0 ¼ 12:5, 15, 20 kN and O0 ¼ 120 rev=min show that an increase of the
imposed weight-on-bit W 0 accelerates the growth of the torsional vibrations, and thus causes the torsional
stick-slip regime to be attained more rapidly for identical initial perturbations, see Figs. 3 and 5. This rate of
growth is also strongly correlated with the stick-slip experienced by the axial dynamics.

The torsional stick-slip oscillations do not always occur at the first fundamental frequency of the drillstring
as shown in Fig. 4(b) for W 0 ¼ 20 kN; a spectral analysis indeed reveals that the bit oscillates in torsion at the
third natural torsional frequency of the drillstring (3.19Hz).

Finally, it is observed that the limit cycle oscillations become unstable when the weight-on-bit reaches a
certain threshold depending on the parameters of the problem; this instability eventually leads to bit bouncing.
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Fig. 3. Evolution of the bit angular velocity O, axial velocity V , and depth of cut per revolution d, for the case W 0 ¼ 15kN and

O0 ¼ 120 rev=min.
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5.4. Influence of the rotational speed O0

Numerical simulations indicate that the growth rate of the amplitude of the torsional vibrations is reduced
with increasing angular velocity O0. For example, computations conducted for W 0 ¼ 15 kN show that a limit
cycle with torsional stick-slip phases is respectively reached after about 50 s for O0 ¼ 60 rev=min and after
about 370 s for O0 ¼ 120 rev=min, while the angular velocity of the bit O still oscillates between about 160 and
200 rev/min after 700 s of simulation when O0 ¼ 180 rev=min.

As for the static weight-on-bit, the rotational speed may influence the natural frequency at which the
torsional vibrations are observed. In Fig. 6(a) corresponding to W 0 ¼ 15 kN and O0 ¼ 30 rev=min, the peak
occurrence frequencies of the bit angular and axial velocities are about 1.5Hz, which might be related either to
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the first natural axial frequency of the drillstring (1.63Hz) or to the second natural torsional frequency
(1.70Hz). When the rotation speed is increased to O0 ¼ 60 rev=min but for the same weight-on-bit
W 0 ¼ 15 kN, we can clearly distinguish the difference between the frequency content of the axial and torsional
vibrations, see Fig. 6(b). The torsional oscillations exhibit an essentially monochromatic (i.e., dominated by a
single frequency) low-frequency content at the fundamental frequency 0.45Hz, whereas the axial dynamics
superimposes on this slow oscillations higher frequency vibrations around 4.4Hz. The existence of two distinct
time scales between the axial and torsional dynamics is related to the magnitude of c, as discussed earlier.

5.5. Variation of torque-on-bit during a stick-slip limit cycle

Fig. 7 shows the variation of the torque-on-bit T with the bit angular velocity O during several stick-slip
limit cycles, computed for the case W 0 ¼ 20 kN and O0 ¼ 120 rev=min; during a cycle, T decreases with
increasing O and vice versa. Such apparent weakening of the resisting torque with the angular velocity during
a stick-slip cycle has been observed in field and laboratory experiments [31,32] and is usually interpreted as an
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intrinsic property of the bit–rock interface [4–7]. In our analysis, the interface law is assumed to be rate-
independent, and the weakening torque with angular velocity is a consequence of the coupling between the
axial and angular motion of the bit through dependence of both T and W on the depth of cut. In fact, the
decreasing torque is directly related to the decrease of the depth of cut with the angular velocity O.
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5.6. Comparison between the discrete and the FEM model

Finally, we seek to compare the results of simulations conducted with the FEM model with those of the 2
degree of freedom discrete model [8,30] in situations where the dynamic response is dominated by the first
natural frequency in torsion (i.e., when the drilling structure behaves as a torsional pendulum).

The considered drilling structure is characterized by the following lumped parameters. For the drillpipe
section: Mp ¼ 28120 kg, Ip ¼ 97:7 kgm2, Cp ¼ 940Nm; for the BHA: Mb ¼ 25081 kg, Ib ¼ 83:1 kgm2,
Cb ¼ 19986Nm. According to Eq. (29), the period of the first natural torsional vibration mode is given by
t� ¼ 2:20 s, which corresponds to a frequency of 0.45Hz that is consistent with the FEM calculations.

Fig. 6 shows a comparison between the response computed with the discrete and the FEM model, when the
control parameters W 0 ¼ 15 kN and O0 ¼ 60 rev=min. An excellent agreement between the two calculations
can be observed for the angular and axial velocity, O and V , as well as for the depth of cut d. On the
other hand, Fig. 4 shows a comparison between the two models when W 0 ¼ 15 kN and O0 ¼ 30 rev=min.
While the overall response is similar in both cases, we can see from this figure that the third natural torsional
frequency of the drillstring is responsible for the stick phase in the angular motion of bit predicted by the FEM
model.
6. Conclusions

In this paper we have extended the approach proposed by Ref. [8] to analyze the self-excited axial and
torsional vibrations of drilling systems with drag bits, by basing the formulation of the model on a continuum
representation of the drillstring rather than on a characterization of the drilling structure by a 2 degree of
freedom system consisting of a torsional compliance and a punctual mass and inertia [8,30]. The dynamic
response of the drillstring is computed using the finite element method. Multiple natural axial and torsional
modes of vibrations of the drilling structure can thus be captured by the model, in contrast to the single
resonance frequency of a torsional pendulum in the original discrete model. In short, the novelty of this paper
lies in the description of a model capable of simulating the vibrations of realistic drilling structures that are
excited by the particular boundary conditions at the bit–rock interface.

These boundary conditions account for both cutting and frictional contact at the interface. On the one
hand, the cutting process combined with the quasi-helical motion of the bit leads to a regenerative effect
that introduces a coupling of axial and torsional modes of vibrations and a state-dependent delay in the
governing equations. On the other hand, the frictional contact process is associated with discontinuities in
the boundary conditions when the bit sticks in its axial and angular motion. The treatment of the boundary
conditions, which requires identifying the conditions when the bit enters or exit a stick phase, is similar
to the description given by Ref. [8] for the discrete model. However, following [30], we adopt Filippov’s
method to calculate the contact forces at the bit–rock interface during stick phases, so as to avoid the solution
chattering observed in the calculations of Ref. [8] that were associated with the sign reversal of the bit axial
velocity.

The general tendencies of the system response that are predicted by the discrete model [8,30] when varying
the control parameters, are similarly observed in the FEM model. Namely, occurrence of stick-slip vibrations
as well as risk of bit bouncing are enhanced with an increase of the weight-on-bit or a decrease of the
rotational speed. Decrease of the torque-on-bit with the bit angular velocity is also observed. All these trends
predicted by either model are supported by field measurements (see Ref. [8] for a detailed discussion). Finally,
we should note that further simulations with this computational model (not reported in this paper) indicate
that a value larger than 1 of the parameter b (related to the bit geometry and the friction coefficient) generally
prohibits the occurrence of stick-slip vibrations, as in the RGD model.

However, new features in the self-excited response of the drillstring are predicted by this computational
model. In particular, stick-slip vibrations can be observed at natural frequencies of the drillstring different to
the fundamental one, depending on the operating parameters. Interestingly, stick-slip vibrations occurring at a
frequency higher than the first natural torsional frequency of the drillstring have been measured with down
hole tools in field operations.
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